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Abstract

We apply second-order operator splitting to the Luo–Rudy I model for electrical wave propagation in the heart. The

purpose of the operator splitting is to separate the nonlinear but local reaction computations from the linear but

globally coupled diffusion computations. This approach allows us to use local nonlinear iterations for the stiff nonlinear

reactions and to solve global linear systems for the implicit treatment of diffusion. For computational efficiency, we use

dynamically adaptive mesh refinement (AMR), involving hierarchies of unions of grid patches on distinct levels of

refinement. The linear system for the discretization of the diffusion on the composite AMR grid is formulated via

standard conforming finite elements on unions grid patches within a level of refinement and aligned mortar elements

along interfaces between levels of refinement. The linear systems are solved iteratively by preconditioned conjugate

gradients. Our preconditioner uses multiplicative domain decomposition between levels of refinement; the smoother

involves algebraic additive domain decomposition between patches within a level of refinement, and Gauss–Seidel

iteration within grid patches. Numerical results are presented in 1D and 2D, including spiral waves.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Modeling electrical activity in the heart

Theoretical studies of electrical activity of the heart have focused on many important issues.

Examples include propagation of action potentials [31,56], development of spiral waves [45,59], and
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effects of strong electric shocks such as those used in electrical termination of arrhythmias (defibril-

lation) [19,27,33,43,55,58]. Accurate calculation of the response of the heart to electrical stimuli

must take into account realistic fiber geometry, anisotropy of cardiac conductivities, detailed mem-
brane properties, microscopic tissue structure, and the inhomogeneous nature of myocardium

[36,43,45,54].

1.2. Survey of numerical methods

The objective of this paper is to increase the computational efficiency of such simulations by employing

advanced numerical methods. We have chosen to study the simple Luo–Rudy I model [34], which can still

produce reasonably realistic simulations. LRI involves a single membrane potential, and eight reactions for
the calcium concentration and seven gating variables.

The numerical methods previously used in simulations of cardiac electrical activity can be divided into

two groups. The methods of the first, larger group are non-adaptive: they use fixed spatial grids and fixed

time-steps. These methods are implemented both on parallel computers [47,56] and ordinary workstations

[2,35,44]; they use both explicit [15,35,44,47] and semi- or fully implicit time-stepping techniques

[2,32,42,56,57]. While clever implementation allowed the researchers to conduct some sample 3D simula-

tions, the resulting modeling tool is very expensive. For example, active anisotropic models that run on

parallel machines (256 processor CM5) have been reported to require more than 15 h to simulate 100 ms of
action potential propagation in a 0.8� 0.8� 0.1 cm piece of the cardiac muscle [47]. The main reason for

this expense is the weakness common to all the methods from this group. When algorithms fail to recognize

regions of high electrical activity and to apply separate numerical treatment depending on the level of

electrical activity, the resulting codes suffer stringent limits on the size of the time-step and spatial resolution

for the whole region of calculations.

The methods of the second group employ spatial adaptivity, temporal adaptivity, or both in order to

avoid this limitation. The intent of these algorithms is to concentrate the computational work in regions of

high electrical activity. Because the positive-definite conductivity tensors ri and re are relatively small
compared to the reaction rate, these regions of high electrical activity will have a small width.

At best, an adaptive scheme could reduce the total computational work by the factor given by the ratio

of the domain volume to the total volume of the regions of high electrical activity. This upper bound on the

adaptive speedup is problem-dependent. If the reaction rates are large compared to the conductivities, these

regions of high electrical activity will be small, and the potential speedup from an adaptive mesh refinement

(AMR) scheme is large.

Several authors have used such adaptive algorithms successfully. A domain-decomposition method

combined with an alternating direction implicit (ADI) Rush–Larsen method implemented in [41] dynam-
ically tracks active regions, decomposes the region of computation into small subdomains, and uses explicit

time-stepping in the subdomains (locally) and implicit method for global integration. This algorithm is

temporally adaptive, but not spatially adaptive. The authors report time savings on the order of 3–17,

compared with a non-adaptive technique. Significantly larger 2D models with active membrane dynamics

(LR phase II was used in the paper) can therefore be used for simulations. A similar approach, involving a

combination of an implicit integration technique with multigrid iteration, is employed in [38]. A large

modular code has recently been developed to accommodate a wide variety of existing cardiac models and

numerical approaches in [40]. This code is not adaptive in space. It allows the user to choose an adaptive
time-integration technique among a few explicit, semi-implicit, and implicit methods. The linear algebra is

handled by a choice of an iterative method (CG, GMRES) with a preconditioner (SOR, incomplete

Cholesky). An irregular grid option allows for complex geometries. Finally, the code is organized to allow

parallelization. The lack of spatial adaptivity prevents the direct extension of these methods into three

spatial dimensions. Electric stimulation of the tissue by strong shocks especially calls for spatial adaptivity
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in the regions near the electrodes and thus makes the method less than optimal for defibrillation studies

even in two dimensions.

The Rush–Larsen temporal adaptation technique was also considered in [39]. Here, it was combined
with explicit, semi-implicit, and fully implicit methods, as well as with a spatial adaptation technique. The

active front was tracked dynamically. All the nodes were marked as either ‘‘active’’ (near the front) or

‘‘inactive’’ and the calculations were performed only at the ‘‘active’’ nodes. This approach does not allow

control of the error in the transmembrane potential as it accumulates over time. This model also seems to

be only applicable for propagation studies.

Methods that are adaptive both temporally and spatially are only beginning to be developed. A space-

time adaptive approach that uses finite differences and is explicit in time has already been shown to produce

a factor of 5 reduction in 2D computational time and memory expense [14], relative to the non-adaptive
explicit algorithm.

1.3. Overview of the paper

The principal numerical developments in this paper are the construction of an effective multiplicative

domain decomposition algorithm for such a hierarchical grid and the development of effective synchro-

nization strategies for adaptation in time. The issues involve both the use of multigrid-like iteration on a

nested hierarchical grid for efficient solution of the diffusion equation and the avoidance of boundary layers
at interfaces between coarse and fine grid.

In Section 2 we will describe the Luo–Rudy I model and our numerical implementation of its model

functions. In particular, we will describe how we avoid unnecessary overflow and cancellation error as well

as excessive computational cost in evaluating these model functions. Next, we will describe a second-order

operator splitting of reaction and diffusion in Section 3. The purpose of the operator splitting is to separate

the nonlinear but local reaction computations from the linear but globally coupled diffusion computations.

We will describe our techniques for integrating the reactions in Section 4 and our techniques for integrating

the diffusion in Section 5. We will use a stiff diagonally-implicit Runge–Kutta (SDIRK) scheme to integrate
the reactions; this scheme is both L-stable and A-stable. We will use a piecewise linear finite element method

with implicit Crank–Nicolson time integration to integrate the diffusion equation. For adaptive mesh re-

finement (AMR) purposes, we will also describe how we formulate our discretization of diffusion on locally

refined domains in Section 5.4.

These computational techniques for uniform grids will give us the basic tools for developing our adaptive

mesh refinement (AMR) scheme in Section 6. We describe modifications to time-step selection in Section 6.1.

We will describe how the AMR algorithm chooses to relocate the finer mesh in Section 6.2. Techniques for

communicating between scales in the mesh hierarchy are described in Section 6.3; this section also discusses
some techniques to avoid taking fine time-steps on coarse grid.Wedescribemodifications to the iterative linear

algebra for AMR in Section 7. The linear system on the hierarchical grid involves appropriate use of mortar

finite elements to determine the composite grid equations; this is described in Section 5.4. The iterative scheme

uses a conjugate gradient iteration, preconditioned by multiplicative domain decomposition, which is de-

scribed in Section 7.1. In order to take advantage of the organization of the grid hierarchy, in Section 7.2 we

will describe a smoother that uses additive domain decomposition. This smoother works well on an array of

grid patches and extends well to distributed computing.

Finally, we will present some numerical results in Section 8.
2. Description of the Luo–Rudy I model

The Luo–Rudy I model is a reaction–diffusion system of the form
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8x 2 X; 8t > 0;
ou

ot
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V
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aðV Þ � aðV Þ þ bðV Þð Þg
q½Ca�iðg; ½Ca�i; V Þ
qV ðg; ½Ca�i; V Þ

2
64

3
75þ

0

0

rx � DðxÞrxV

2
64

3
75

� RðuÞ þ DðV Þ; ð1aÞ
8x 2 oX; 8t > 0; n � rxV ¼ 0; ð1bÞ
8x 2 X; uðx; 0Þ given: ð1cÞ

The vector u of unknowns consists of the vector g of gating variables (dimensionless), the intracellular
calcium concentration [Ca]i (in millimolar), and the membrane potential V (in millivolts). The vect-

ors aðV Þ and bðV Þ are vectors of reaction rates for the gating variables, and are described in Eqs.

(A.5a)–(A.10b). The notation ðaþ bÞg represents the componentwise product of the two vectors aþ b

and g.

These functions have been modified slightly from the definitions in [34] to avoid unnecessary overflow

and discontinuity; for details, see Appendix A. We do not guard against underflow. Even with our

modifications, overflow can occur for very extreme values of V . On our machine, the first double-pre-

cision overflow occurs for negative V in bmðV Þ around V ¼ �7807, and for positive V in bK1
ðV Þ around

V ¼ 8831 mV. (Voltages of such magnitude are highly destructive, causing at least electroporation, and

should not be reached.) With the original Luo–Rudy I model functions, the earliest overflow occurred in

bK1
ðV Þ for V < �1472 or V > 1288. In single precision, overflow in the original Luo–Rudy I parameter

bK1
ðV Þ would occur for V < �184 or V > 161 mV; this is close to the range of values that occur in our

simulations.

The functional forms (A.2) and (A.5a)–(A.10b) are very expensive to evaluate during the numerical

solution of the differential equation (1). We use Hermite cubic spline interpolants to these functions on 20

uniform intervals over �1006 V 6 100. These splines are as accurate in representing the Luo–Rudy I model
functions as those functions were accurate in representing the physical data. Further, these splines are

continuously differentiable and much less expensive to evaluate.
3. Operator splitting

The system of equations (1) involves both reaction and diffusion. Our approach to integrating these

equations will be to use a second-order operator splitting [48,49,53]:
solve
ou

R;nþ1
2

ot ¼ RðuR;nþ1
2Þ 8x 2 X; 8tn 6 t6 tn þ 1

2
Dtnþ

1
2;

uR;nþ
1
2ðx; tnÞ ¼ uðx; tnÞ 8x 2 X;

(
ð2aÞ
solve

ouD;nþ1

ot ¼ DðuD;nþ1Þ 8x 2 X; 8tn 6 t6 tn þ Dtnþ
1
2;

n � rxV D;nþ1ðx; tÞ ¼ 0 8x 2 oX; 8tn 6 t6 tn þ Dtnþ
1
2;

uD;nþ1ðx; tnÞ ¼ uR;nþ
1
2ðx; tn þ 1

2
Dtnþ

1
2Þ 8x 2 X;

8<
: ð2bÞ
solve
ounþ1

ot ¼ Rðunþ1Þ 8x 2 X; 8tn þ 1
2
Dtnþ

1
2 6 t6 tn þ Dtnþ

1
2;

unþ1ðx; tn þ 1
2
Dtnþ

1
2Þ ¼ uD;nþ1ðx; tnþ1Þ 8x 2 X:

(
ð2cÞ
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Here, we use the centered notation Dtnþ
1
2 ¼ tnþ1 � tn. This splitting of the problem is second-order ac-

curate in time. The advantage of this approach is that we can integrate the reactions using stiff solvers

with localized time-step control at individual grid nodes and we can integrate the diffusion using fast
linear solvers.
4. Integration of reactions

Recall from Eqs. (2a) and (2c) that the operator-split reaction problems have the form

ou

ot
¼ RðuÞ 8x 2 X; 8tn < t < tn þ Dt;

uðx; tnÞ given 8x 2 X:

In practice these ordinary differential equations are stiff, meaning that oR=ou has a wide range of eigen-

values. As a result, we will use appropriate stiff solvers.
4.1. Singly diagonally implicit Runge–Kutta scheme

To integrate these ordinary differential equations, we will use a second-order SDIRK scheme, described

in [18]. Our basic integration scheme takes the form

k1 ¼ Rðun þ k1cDtÞ; ð3aÞ
k2 ¼ Rðun þ ½1� 2c�k1Dt þ ck2DtÞ; ð3bÞ
unþ1 ¼ un þ ðk1 þ k2Þ
Dt
2
: ð3cÞ

Here, c � 1�
ffiffiffiffiffiffiffiffi
1=2

p
, so that the scheme is both L-stable and A-stable. Extensions of this scheme to higher

order can be found in [28,37].

4.2. Solving the nonlinear systems

The SDIRK scheme equations (3a) and (3b) require the solution of nonlinear equations of the form

fðkÞ � k� Rðuþ kcDtÞ ¼ 0

for fixed u and fixed Dt. Newton iteration to solve such a nonlinear system replaces k by kþ s, where s

solves

of

ok
s ¼ �fðkÞ:

Note that the Jacobian matrix of=ok has a special structure for the Luo–Rudy I model:

of

ok
¼

I þ diagðaÞ þ diagðbÞ 0 �a0 þ ða0 þ b0Þg
� oq½Ca�i

og
1� oq½Ca�i

o½Ca�i
� oq½Ca�i

oV

� oqV
og

� oqV
o½Ca� 1� oqV

oV

2
64

3
75 � D G

F T

� �
;

i
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where D ¼ I þ diagðaÞ þ diagðbÞ is 7� 7 and diagonal, and the vectors a and b are as in Eq. (1a) for the

gating variables. As a result, it is easy to use the first seven equations to eliminate the increments for the

gating variables from the system of nine Newton equations, and reduce to a system of two equations in-
volving the increments for the intracellular calcium ½Ca�i and the membrane potential V . Specifically, in
order to solve

D G
F T

� �
sg
s2

� �
¼ � fg

f2

� �
;

we compute

M ¼ T� FD�1G 2 R2�2;

s2 ¼ �M�1ðf2 � FD�1fgÞ 2 R2;

sg ¼ �D�1ðfg þGs2Þ 2 R7:

Any linear systems involved in Newton�s method are either 7� 7 diagonal (involving D) or 2� 2 (in-

volving M).
4.3. Comments on reaction integrators

Our use of second-order integration methods for reaction is consistent with our use of second-order

operator splitting of the reaction and diffusion (described in Section 3), with our second-order integration

of diffusion (described in Section 5), and with our use of continuously differentiable cubic splines to rep-

resent the gate rates aðV Þ and bðV Þ (described in Section 2). However, stimulus currents Istðx; tÞ that involve
discontinuities in time can prevent our reaction integrations from exhibiting second-order accuracy.

It is reasonable to ask whether higher-order integration schemes for the reactions would be appropriate.

In theory, this would make sense only if we were able to produce a fully third-order algorithm for inte-

grating the Luo–Rudy I model equations. In order to produce a third-order algorithm for the Luo–Rudy I

model, it would be necessary to use twice continuously differentiable splines to represent aðV Þ and bðV Þ (to
increase the regularity of the solution of the differential equations), to use third-order integration of dif-

fusion and third-order operator splitting of reaction and diffusion. If the computational domain is rect-

angular, then it would also be necessary to perform local refinement near the corners to prevent

degradation of accuracy due to restricted regularity of the solution near the corners; alternatively, we could
modify the finite element method for the diffusion to include basis functions that represent the non-smooth

behavior near the corners.

In practice, sometimes accuracy is a more important consideration than order. In other words, it is

possible that a reaction integrator with higher than second-order accuracy might obtain the desired ab-

solute accuracy with less work than our SDIRK scheme. Such decisions depend on other factors, such as

the choice of mesh width and time-step. For example, with relatively coarse meshes the propagating re-

action front will be very sharp, and the reaction integration will have to deal with very large changes in the

solution in one time-step. On the other hand, with relatively fine meshes the diffusion will spread the re-
action front over a moderate number of grid cells, and the reaction integration will see much smaller

changes in the solution in one time-step.

We have implemented a Richardson extrapolation of our SDIRK integration, in order to achieve a

desired accuracy, possibly through high order. Richardson extrapolation involves recursive time-step

halving, so the work goes up substantially with each extrapolation. For example, the second-order SDIRK

integration requires two nonlinear system solves, so the third-order extrapolant requires an additional four

nonlinear solves, fourth-order requires an additional eight nonlinear solves, and so on. Numerical exper-
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iments indicate that these extrapolants almost always achieve the desired order of accuracy; only abrupt

changes in the stimulus current or occasional straddling of spline interpolation points prevents high order

in extrapolation. The reason for using the Richardson extrapolation with the SDIRK scheme is to test the
usefulness of higher-order reaction integration. We will discuss this issue further with our numerical results

in Section 8.

In order to determine an appropriate tolerance for the reaction integration, we first determined a model

for the error due to operator splitting and spatial discretization of the diffusion equation. In other words,

we chose very small tolerances for the reaction integration, for the nonlinear system solves and for the

iterative solution of the linear systems for the diffusion equation. We performed mesh refinement studies to

see how the error behaved as a function of the mesh width. (See Section 8.1 for a description of this mesh

refinement study.) This gave us the following empirical formula for the reaction tolerance:

tolerance ¼ minf10�3; maxf104�; 40Dx2gg;

where � is machine roundoff. In other words, Newton iteration is continued until

jf2ðkÞj6 tolerancemaxfjk2j; jR2jg;

and Richardson extrapolation of the SDIRK scheme is continued until

jDV j6 tolerancejV j;

where DV is the estimated error in the Richardson extrapolation for the membrane potential V .
5. Integration of diffusion

In order to integrate the diffusion Eq. (2b) in second-order operator splitting, we will develop a finite

element discretization that is second-order accurate in both space and time. On a grid without local re-
finement, we will use piecewise-linear functions for spatial discretization and Crank–Nicolson for temporal

discretization. This approach is described in Sections 5.2 and 5.3. With local refinement refinement, we will

use mortar elements to form the composite grid equations in Section 5.4.

5.1. Weak form on the full domain

Given initial data V0 2 H 0ðXÞ, the weak form of the diffusion problem (2b) is to find V ðx; tÞ so that

8t > 0V ð�; tÞ 2 H 1ðXÞ, V ð�; 0Þ 2 L2ðXÞ and

8w 2 H 1ðXÞ; 0 ¼ d

dt

Z
X
wðxÞV ðx; tÞdxþ

Z
X
rxwðxÞ � DðxÞrxV ðx; tÞdx �

d

dt
ðw; V Þ þ Bðw; V Þ;

8w 2 L2ðXÞ; 0 ¼ ðw; V � V0Þ:
ð4Þ

Here, H 1ðXÞ represents the usual Sobolev space, consisting of functions whose derivatives of order up to

one are square-integrable on X. We assume that in any number of dimensions, the diffusion coefficient is

bounded and uniformly positive-definite:

9DPD > 0 8x 2 X; 8y 6¼ 0; D6
yTDðxÞy
yTy

6D:

As a result, the bilinear form B is self-adjoint, bounded and coercive on H 1ðXÞ. This problem is known to

be equivalent to
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oV
ot
¼ rx � DðxÞrxV 8x 2 X; 8t > 0;
n � rxV ¼ 0 8x 2 oX; 8t > 0;
V ðx; tÞ ¼ V0ðxÞ 8x 2 X;

provided that the initial data V0, the diffusion coefficient D and the domain X are sufficiently smooth.
5.2. Galerkin methods on the full domain

To integrate the diffusion equation in the operator-splitting subproblem (2b), we use a conforming

finite element method. An excellent reference for this technique applied to diffusion problems is [50]. We

begin by choosing a finite-dimensional subspace Mh � H 1ðXÞ; our choice of Mh is described below. The

semi-discrete Galerkin approximation is a function Vhðx; tÞ 2 Mh for all t > 0 that satisfies the weak

equations

8Wh 2 Mh; 0 ¼ d

dt

Z
X
WhðxÞVhðx; tÞdxþ

Z
X
rxWhðxÞ � DðxÞrxVhðx; tÞdx

� d

dt
ðWh; VhÞ þ BðWh; VhÞ; ð5aÞ
8Wh 2 Mh; 0 ¼ ðWh; V0 � VhÞ: ð5bÞ

In (5b), we have used the L2-projection of the initial data for the semi-discrete problem. Note that if

V0 2 Mh, then the L2-projection implies that Vhðx; 0Þ ¼ V0ðxÞ.
A fully discrete Galerkin approximation uses an appropriate stiffly stable method for solving initial value

problems for ordinary differential equations. A finite element method for approximating the solution of (4)

is a Galerkin method that chooses the finite-dimensional subspace Mh to consist of piecewise polynomials

on some mesh of width h. In our applications, we will choose Mh to consist of continuous functions that are
linear in each coordinate on some given rectangular mesh. We will let h denote the maximum cell width in

any coordinate direction. It is well known that for quasi-uniform meshes, Mh approximates functions in

H 2ðXÞ with order h2. We will use the trapezoidal rule to integrate in time; this leads to the familiar Crank–

Nicolson method for the diffusion equation:

8Wh 2 Mh; 0 ¼ 1

Dt
ðWh; Vhð�; tnþ1Þ � Vhð�; tnÞÞ þ

1

2
BðWh; Vhð�; tnþ1Þ þ Vhð�; tnÞÞ; ð6aÞ
8Wh 2 Mh; 0 ¼ ðWh; V0 � Vhð�; 0ÞÞ: ð6bÞ

It is possible to show [50] that the error in the fully discrete method satisfies

kV ð�; tÞ � Vhð�; tÞkH0ðXÞ6C e�k1tkV ð�; 0Þ
"

� Vhð�; 0ÞkH0ðXÞ þ h2
Z t

0

oV
ot
ð�; sÞ

����
����
H2ðXÞ

ds

þ Dt2
Z t

0

o3V
ot3
ð�; sÞ

����
����
H0ðXÞ

dsþ Dt2
Z t

0

o2rx � DrxV
ot3

ð�; sÞ
����

����
H0ðXÞ

ds

#
:
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Here, C is a constant depending on X and D, and k1 is the smallest eigenvalue of �rx � Drx on X. The
scheme is basically second-order in space and time for t ¼ Oð1Þ; at early time, the order of the error depends

on the accuracy with which the initial data can be approximated by the finite element space. Note that the
influence of the error in the initial data fades exponentially as time increases.

It is well known that the weak equations using Crank–Nicolson time integration lead to linear systems of

the form

M

 
þ K

Dtnþ
1
2

2

!
Vnþ1 ¼ M

 
� K

Dtnþ
1
2

2

!
Vn: ð7Þ

Here, M is the mass matrix and K is the stiffness matrix. We will develop the details of these matrices in

Section 5.3.
5.3. Numerical implementation

In 1D, note that the nonzero contributions to the mass or stiffness matrices from element ðxk; xkþ1Þ only
involve nodal basis functions Wk and Wkþ1. For piecewise constant diffusion coefficient D, the integrals can
be performed exactly; otherwise, it is sufficient to approximate the integrals using a one-point Gaussian
quadrature rule (i.e., the midpoint rule). This suggests that we form the diffusive quadratures

q0

q1

" #
kþ1

2

�
Z xkþ1

xk

WkðxÞ

Wkþ1ðxÞ

" #
WkðxÞWkþ1ðxÞ½ �dx

tnþ1k � tnk

tnþ1kþ1 � tnkþ1

" #

þ Dtnþ
1
2

Z xkþ1

xk

oWk
ox

oWkþ1
ox

2
4

3
5DðxÞ oWk

ox
oWkþ1

ox

� �
dx

tnþ1k þtnk
2

tnþ1
kþ1þt

n
kþ1

2

2
64

3
75

¼
2 1

1 2

" #
tnþ1k � tnk

tnþ1kþ1 � tnkþ1

" #
Dxkþ1

2

6
þ

1 �1

�1 1

" #
tnþ1k þ tnk

tnþ1kþ1 þ tnkþ1

" #
Dkþ1

2
Dtnþ

1
2

2Dxkþ1
2

�Mkþ1
2

tnþ1k � tnk

tnþ1kþ1 � tnkþ1

" #
þ Kkþ1

2

Dtnþ
1
2

2

tnþ1k þ tnk

tnþ1kþ1 þ tnkþ1

" #
: ð8Þ

The finite element equations at internal nodes take the form
ðq0Þkþ1
2
þ ðq1Þk�1

2
¼ 0: ð9Þ
In general, the sum, of the quadratures associated with a given node, over elements within the com-

putational domain is zero. The mass matrix M and stiffness matrix K in Eq. (7) are formed by combining

the elementwise mass and stiffness matrices from Eq. (8) into the finite element Eq. (9).

In 2D, the non-zero contributions to the mass or stiffness matrices from element ðxk; xkþ1Þ � ðy‘; y‘þ1Þ
involve only nodal basis functions Wk;‘, Wkþ1;‘, Wk;‘þ1 and Wkþ1;‘þ1. For piecewise constant diffusion

coefficient D, the integrals can be performed exactly. This suggests that we form the diffusive

quadratures
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In these equations, ‘‘tr’’ denotes the trace of a matrix. The finite element equations at internal nodes then

take the form

ðq00Þkþ1
2
;‘þ1

2
þ ðq10Þk�1

2
;‘þ1

2
þ ðq01Þkþ1

2
;‘�1

2
þ ðq11Þk�1

2
;‘�1

2
¼ 0: ð11Þ

In general the sum, over elements within the computational domain, of the quadratures associated with a

given node is zero. The mass matrix M and stiffness matrix K in Eq. (7) are formed by combining the

elementwise mass and stiffness matrices from Eq. (10) into the finite element Eq. (11).
5.4. Weak form with sub-domains

In AMR, we will use a hierarchy to define our computational grid. Our AMR algorithm will be re-

cursive, always working with at most two grids in any region of space. Thus, it will suffice locally to assume
that our computational domain X satisfies X ¼ Xf [ Xc, where Xf and Xc are disjoint open sets (the fine and

coarse domains). Let S ¼ oXf \ oXc be the interface between the two domains, and let lf ¼ nf � DrxV be

the diffusive flux, where nf is the unit outer normal on Xf . We can introduce a Lagrange multiplier kf to
force continuity of the solutions on the two domains and develop the following weak formulation of the

diffusion equation:

8wf 2 H 1ðXfÞ
d

dt

Z
Xf

wfVf dxþ
Z
Xf

rxwf � DrxVf dx�
Z
S
wflf dx ¼ 0; ð12aÞ
8wc 2 H 1ðXcÞ
d

dt

Z
Xc

wcVc dxþ
Z
Xc

rxwc � DrxVc dxþ
Z
S
wclf dx ¼ 0; ð12bÞ
8kf 2 H�
1
2ðSÞ

Z
S
kfð�Vf þ VcÞdx ¼ 0: ð12cÞ

If we choose finite-dimensional subspaces Mf � H 1ðXfÞ, Mc � H 1ðXcÞ and Kf � H�
1
2ðSÞ, we can use the

weak formulation on sub-domains to develop fully discrete finite element equations. The resulting fully

discrete system will have the form

Mf

 
þ Kf

Dtnþ
1
2

2

!
Vnþ1

f � Cfm
nþ1

2

f Dtnþ
1
2 ¼ Mf

 
� Kf

Dtnþ
1
2

2

!
Vn

f ; ð13aÞ
Mc

 
þ Kc

Dtnþ
1
2

2

!
Vnþ1

c � Ccm
nþ1

2
c Dtnþ

1
2 ¼ Mc

 
� Kc

Dtnþ
1
2

2

!
Vn

c ; ð13bÞ
�CT
f V

nþ1
f þ CT

cV
nþ1
c ¼ 0: ð13cÞ

The specific form of these equations is dimensionally dependent and will be elaborated below in Eqs. (14)

and (16). We will refer to the entries of m
nþ1

2

f as the mortars [9].
In 1D, we will take the finite-dimensional subspace Kf of Lagrange multipliers to be the set of all

scalar values at xi. Suppose that xi ¼ xI 2 S is a node shared by the fine and coarse domains, with the

fine domain to the left of the coarse. With piecewise linear elements, our discrete equations take the

form
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ðq1Þi�1
2
� li ¼ 0;

ðq0ÞIþ1
2
þ lI ¼ 0;

� ti þ tI ¼ 0:

ð14Þ

The quadratures q0; q1 in these equations were defined in Eq. (8). In addition, we have incorporated the
time-step Dtnþ

1
2 into the mortar li. The third equation enforces continuity between the coarse and fine grid

solutions and the other two equations suggest that we define the coarse grid mortar at node xI ¼ xi 2 S in

terms of the fine mortar by

lI ¼ li:

These equations say that the composite grid equation at xi ¼ xI 2 S is

ðq0ÞIþ1
2
þ lI ¼ 0; where lI ¼ li ¼ ðq1Þi�1

2
:

Note that ðq0ÞIþ1
2
is a linear function of the coarse grid unknowns, and ðq1Þi�1

2
is a linear function of the fine

grid unknowns and the coarse interface unknown tI (since continuity requires that ti ¼ tI ). Similar linearity
conditions apply at other grid nodes. In general, the composite grid equations have the form of a linear

system

Aff Afc

Acf Acc

� �
uf
uc

� �
¼ bf

bc

� �
; ð15Þ

where uf is the vector of unknowns on the fine grid and uc is the vector of unknowns on the coarse grid.

In 2D, we will take Kf to be the set of all discontinuous piecewise linear functions on the fine mesh

restricted to S. Our basis functions in Kf will be chosen to be dual to the piecewise linear basis functions in

Mf , restricted to S. As an example, suppose that S consists of a line segment parallel to the y-axis. Then, if
ðxi; yjÞ is a boundary node, we want

Z yN

y0

Vi;jðxi; yÞkj0 ðyÞdy ¼
1

2
dj;j0

yjþ1 � yj�1; 0 < j < N ;
y1 � y0; j ¼ 0;
yN � yN�1; j ¼ N :

8<
: ð16Þ

We will break S into intervals associated with the fine mesh and assume that fine mortars at the endpoints

of S are identical with the coarse grid values there. In this case, it is easy to see that the dual basis functions

at nodes j interior to S are

kjðyÞ ¼
2� 3

y�yj
yjþ1�yj

; yj < y < yjþ1;

2þ 3
y�yj

yj�yj�1
; yj�1 < y < yj;

0; otherwise:

8<
:

The dual basis functions at the end nodes of S are the indicator functions for the end elements. With this
choice for the basis functions in Kf , we find that Cf is diagonal.

Suppose that Xf is to the left of S at fine node ðxi; yjÞ, and that the coarse domain lies to the right of

coarse node ðxI ; yJ Þ, where xi ¼ xI . Also suppose that exactly two fine grid sides of equal length are con-

tained in each coarse grid side within S. (See Fig. 1.) Then, our discrete equations are:

ðq11Þi�1;j�1 þ ðq10Þi�1;jþ1 � li;j ¼ 0;

2 2 2 2



Fig. 1. Example of interface S between coarse and fine grids: (a) fine corner at coarse corner, (b) fine corner between coarse corners.
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ðq01ÞIþ1
2
;J�1

2

þ ðq00ÞIþ1
2
;Jþ1

2
þ 1

2
li;j�1 þ li;j þ 1

2
li;jþ1 ¼ 0; where yj ¼ yJ ;
�ti;j þ
tI;J ; yj ¼ yJ ;
1
2
ðtI ;J þ tI ;Jþ1Þ; yjþ1 ¼ yJ

�
¼ 0:

Here, we have incorporated the time-step Dtnþ
1
2 and the mesh length into the mortars li;j. Similar equations

hold at corners of the domains, or at physical boundaries. In general, the continuity condition implies that

the fine grid nodal values on S are equal to the restriction of the coarse basis functions to S; in the current

example,

ti;j ¼
tI ;J ; yj ¼ yJ ;
1
2
ðtI;J þ tI ;Jþ1Þ; yjþ1 ¼ yJ :

�

The other equations imply that at a coarse node in S we should define the coarse grid mortar to be the fine

grid mortar at that same node, plus half the sum of the fine grid mortars at neighboring fine grid nodes in S.
In the current example, if ðxi; yjÞ ¼ ðxI ; yJ Þ, then

lI ;J ¼ 1
2
li;j�1 þ li;j þ 1

2
li;jþ1:

These give us equations to determine fine grid boundary values from coarse grid values and to determine
coarse grid mortars from fine grid mortars. These equations say that the composite grid equation at

ðxi; yjÞ ¼ ðxI ; yJ Þ 2 S is

ðq01ÞIþ1
2
;J�1

2

þ ðq00ÞIþ1
2
;Jþ1

2

þ lI ;J ¼ 0; where

lI ;J ¼ 1
2
li;j�1 þ li;j þ 1

2
li;jþ1

¼ 1
2
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Note that the coarse quadratures are linear functions of the coarse grid unknowns, and the fine quadratures

are linear functions of the fine grid unknowns and the coarse interface unknowns (since continuity requires

that the fine grid interface solution is the restriction of the coarse solution). Similar linearity conditions
apply at other grid nodes. Recall that the composite grid equations have the form (15), where uf is the

vector of unknowns on the fine grid and uc is the vector of unknowns on the coarse grid. The first block

equation in this system represents the finite element equations at fine grid unknowns and the second block

equation represents the finite element equations at coarse grid nodes, include nodes in the coarse-fine

interface S.
Since the AMR grids are designed so that coarse grid cells are aligned with fine grid cells, the

mortar equations produce the same composite grid system as the conforming finite element method

itself. The mortars serve the purpose of organizing the communication between grids in the AMR
hierarchy.
6. Adaptive mesh refinement

There are various forms of adaptive mesh refinement (AMR), ranging from static refinement [1,46] to

dynamic refinement in space [12,13,16,20–26] and to dynamic refinement in both space and time

[5,8,14,30,51]. Our approach follows, as closely as possible, the basic principles developed by Berger and
Colella [5,8].

In this paper, we will describe an AMR algorithm that dynamically selects refinement in both space and

time. It will use a nested hierarchy of grids, each selecting appropriate time-steps chosen for needs of local

accuracy and synchronization with coarser computations. The grid at a given level of refinement within the

hierarchy will be a union of logically rectangular arrays of grid cells. These rectangular arrays of grid cells

are called patches and form the basic organizational unit for computation. Communication between pat-

ches is regular and small compared to the work within the patch, so the algorithm extends nicely to dis-

tributed computation.
We assume that we are given some initial coarse mesh. We will call this mesh the coarsest level of re-

finement and denote it by L0. Finer levels L‘ for ‘ > 0 are defined recursively from the coarser level L‘�1.

We assume that each level L‘ consists of a finite array of patches, each of which is a logically rectangular

array of cells. Here, ‘‘logically rectangular’’ means that the array of cells can be mapped to a rectangular

grid by a continuous coordinate transformation. The grid patches themselves can be non-rectangular in

space; we only require that each patch be rectangular as a data array.

We assume that if a coarse cell is refined in any part of its physical space, then it is refined everywhere. As

a result, the boundary of any fine patch on level L‘ coincides with the boundary of a logically rectangular
array of coarse grid cells on level L‘�1. This assumption can restrict the grid generation for curvilinear grids;

see [3] for an alternative.

We assume that we are given an integer refinement ratio r. Whenever a coarse cell on level L‘ is refined, it

is subdivided into r cells in each logical coordinate direction on level L‘þ1. The refinement ratio is a power of

2 and is commonly chosen to be 2 or 4. Note that the assumptions of a fixed refinement ratio and of grid

alignment imply that on any level L‘ with ‘ > 0, in any patch, the number of cells in any coordinate

direction is an integer multiple of the refinement ratio.

We assume that the union of fine patches on level L‘þ1 is contained in the interior of the union of coarse
patches on level L‘. However, an individual fine patch is not required to lie inside any single coarse patch.

Note that this assumption implies that the coarsest level L0 must completely cover the entire physical

domain. This in turn implies that we must be able to provide a logically rectangular grid on the coarsest

level. This assumption can restrict the range of application of this form of AMR. For modifications of the

AMR technique that extend to more general problem geometry, see [4,6].
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After we advance the data on patches in a coarse level L‘ to some time, we assume that the data on

patches in a finer level L‘þ1 are advanced by as many time-steps as required by stability and accuracy to

reach exactly the same time as the coarser level L‘. This assumption implies that coarse patches are inte-
grated before fine patches; it also implies that the time-stepping algorithm must be applied recursively

within each time-step on all but the finest level.

6.1. Time-step selection for AMR

Since we are using stiffly stable integrators for reaction and diffusion, there is no a priori choice for the

time-step on a given grid level. Since we are moving the mesh during AMR, however, we do need to make

sure that the dynamical features requiring refinement do not move off the fine grid region before the next
regridding event.

The Luo–Rudy I reaction–diffusion system can generate traveling waves with reasonably well-deter-

mined speeds. From numerical experiments, we have determined the front speed to be v ¼ 6:6 cm/ms for

our model parameters. Thus, on any level of mesh refinement, we require Dt6Dx=v. In order to enforce

synchronization between fine and coarse computations, we also require the time-step on a fine level L‘þ1 to

be an integer multiple of the time-step on its coarser level L‘. If the finer level can be refined, then the

number of time-steps on the fine level must also be an integer multiple of 2, so that we can perform

Richardson error estimation for regridding, if necessary.
In performing the integration routines recursively, first we determine the initial time-step size as de-

scribed previously in Section 6.1. Then, we loop over time-steps until we synchronize with the coarser level,

if it exists. Within each time-step, we use operator splitting to integrate the reaction and diffusion equations;

this is described in Section 6.3. Afterwards, we use recursion to repeat the process on the finer levels. At

appropriate times, we regrid the finer levels as described in Section 6.2. Finally, we determine the next time-

step size.

6.2. Regridding

Because we are interested in solving time-dependent problems, we allow the mesh refinement to move in

time. We use an error estimation procedure (described below) to determine where the unacceptably large

errors occur on a given level. The tagged cells are organized into grid patches using the Berger–Rigoutsos

algorithm [7]. The same process is used to generate the initial grid refinement as is used at later times. By

using an error estimator, rather than a gradient detector, we are able to place mesh refinement where

discontinuities in the variables are about to form, or where the algorithm is not able to produce second-

order accuracy for some other reason, such as a lack of smoothness in the equation of state. Note that this
error estimator will use a Richardson error estimation process, naturally combining errors due to both

spatial and temporal differences. Since the time-step is related to the mesh width through the front speed, as

described just above in Section 6.1, this error estimation process is natural. The use of this front speed is

also crucial in determining new grid patches, which are required to contain the front until the next

regridding event.

Let us describe how grid cells are selected for refinement. First, cells in the patches belonging to some

given coarse level L‘ are tagged if their global integration error is too large. This procedure uses both

Richardson extrapolation to estimate the local truncation error in the integration, and a simple device to
estimate the number of time-steps to be performed on this level of refinement. This error estimation pro-

cedure is a standard procedure in the numerical integration of ordinary differential equations [17]. Suppose

that at each time-step in cell i we commit an error of magnitude �i (principally the local truncation error);

further, suppose that the computation permits a bound M on the growth of these errors. Note that the

Crank–Nicolson scheme finite difference equation (7) shows that the computational solution essentially
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amounts to applying a perturbation of the identity operator to the previous solution; it is therefore rea-

sonable to expectM to be close to 1 for smooth flow and sufficiently fine mesh. Then the error eðnÞi in cell i at
step n satisfies

eð0Þi 6 �i; eðnÞi 6 �i þMeðn�1Þi for n > 1:

An argument by induction shows that

eðnÞi 6 �i
Xn�1
j¼0

Mj ¼ �i
Mn � 1

M � 1
:

If M � 1þ l�i is close to one, then for small n the error bound will be approximately n�i.
Suppose that the local truncation error satisfies

�i ¼ CDtkþ1;

where k is the expected global order of the scheme. (Note that our spatial and temporal error orders are

equal.) Then, the error in taking one coarse step of size qDt is

eðnÞi;c � Cqkþ1Dtkþ1:

On the other hand, if we take q fine time-steps of size Dt, the error is

eðnÞi;f � CqDtkþ1:

If q > 1, then this allows us to estimate the local error of a fine time-step by

�i �
eðnÞi;c � eðnÞi;f

qkþ1 � q
¼

wðnÞi;c � wðnÞi;f

qkþ1 � q
;

where w is the quantity being monitored for errors. This gives us a computable estimate for the local

truncation error. The accumulated error over N time-steps can be estimated by multiplying the local error
by the anticipated number of time-steps N . We can approximate N � L=cDt, where L is some length scale

associated with the problem, c is the speed of the reaction front (see Section 6.1) and Dt is the current time-

step. As a result, cell i is tagged for refinement if the relative error satisfies

jwðnÞi;c � wðnÞi;f j
maxj jwðnÞj;f j

L
ðqkþ1 � qÞcDt > tolerance:

In the computations described later in this paper, we always chose the tolerance to be 0.1.

Note that error estimation is performed on pseudo-patches that potentially lie in index spaces between

the current level of refinement and the next coarser level. This is because the pseudo-patches are coarsened

by a factor of the regrid interval q ¼ 2, and mesh refinement uses an integer multiple r ¼ 2 or 4 of the regrid
interval. This reduces the work in comparing the errors, compared to estimating the error on the current

level and something even finer.

It is important to consider the implementation of this error estimation strategy on a recursively refined

mesh. Note that errors on coarse and fine meshes are estimated at different times, namely at one step

forward on each individual level. At first glance, the fact that these times are different would appear to be

undesirable. However, the alternative of comparing errors on all levels at the same time actually leads to

much wasted work and larger refined regions. This is because the error estimation on the coarse mesh places

the refined cells where the disturbance will be moving, plus buffer cells. Thus it is only necessary to buffer by
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q� 1 cells (where q is the regrid interval), since that is the number of time-steps that will be taken between

the times when the errors are estimated, and when the mesh will next be moved. If the errors had been

computed at the same times, then it would be necessary to buffer by q cells on each level. Furthermore, the
error estimation would have to proceed through more than one time-step, with recursive calls to integration

on finer levels in order to provide data for finer grids. Since the mesh is going to be moved, this is extra

work being performed for data that are only going to be discarded.

6.3. Advancing the data

When we advance the data at a given level of refinement L‘, we have available to us a grid hierarchy

consisting of the current level of refinement and all coarser levels L‘�1; . . . ; L0. We need to perform the steps
of operator splitting for the reaction–diffusion system on level L‘. This means that we react for a half-step,

solve the diffusion equation for a full step and then react for a half-step. This process, together with re-

cursive integration of finer levels and infrequent regridding, continues until we have completed that number

of steps required for synchronization with a coarser level L‘�1.

There are important issues to examine in this process. One issue regards how to handle the initial re-

action on the composite grid; this step provides the initial data for the diffusion step. We discuss the details

of this initial reaction step in Section 6.3.1. Another issue concerns the iterative solution of the linear system

for the diffusion; this computation is discussed in Section 7. Note that this linear system involves unknowns
from patches on levels L‘; . . . ; L0. A third issue involves the relationship of the second reaction to the

synchronization of fine data with coarse; this is discussed in Section 6.3.2.

6.3.1. Initial operator-split reaction

We expect the error estimation process to select refinement in the neighborhoods of the strong reaction

front. This is because the stiff reaction in the Luo–Rudy I problem is not near steady-state there, so the

errors in integrating the reactions are largest in that region. Away from the reaction front, we expect the

potential to be varying slowly near equilibrium values for the reaction; both the diffusion and the reaction
will involve small changes in the solution of the equations.

This suggests that we can use time interpolation on coarser levels L‘�1; . . . ; L0 to determine the initial

data for the linear system on those levels. We admit that this initial data should be the result, via operator

splitting, of the current (fine) half-step of reaction; the effect of the time interpolation will be to ap-

proximate the result at the half-time of both reaction and diffusion on the coarse grid. However, in re-

gions away from the reaction front, the fast reactions are nearly at steady state and the diffusion is

relatively small. As a result, the difference in computational results between the two choices of initial data

is negligible, while the difference in computational cost may be substantial for more complicated heart
models.

Whenever we take a time-step on level L‘, we use the SDIRK scheme to compute the results after a half-

step of reaction. Note that this SDIRK scheme involves a local time-stepping strategy (at each point in

space) to guarantee a desired accuracy in the reaction integration (see Section 4.3.).

6.3.2. Final operator-split reaction and synchronization

After we solve the linear system for the diffusion, we perform a second half-step of reaction in order to

obtain overall second-order accuracy for the operator splitting process. This second reaction is performed
on the current level L‘ in the same way as it was performed before solving the diffusion equation. However,

there are important differences in how the computations proceed on coarser levels L‘�1; . . . ; L0.

In general, there is no need to perform the second reaction step on the coarser levels. These levels will use

the results from their own coarse time-steps to determine, via time interpolation, the initial data for the next

linear system for diffusion on the current level L‘. The exception occurs when the current level reaches the
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same time as its coarser level L‘�1, because it is necessary to synchronize the data between levels. At that

point, it is necessary to perform a half-step of reaction on all synchronized levels.

We also need to adjust the coarse results near the boundary with the fine grid, in order to avoid
boundary layers. The results of the reactions for synchronization replace the previous results from the

reaction–diffusion–reaction step on the coarser levels. However, the iterative solution of the diffusion

equation on the composite grid does not provide us with results for the solution on those portions of the

coarse level L‘�1 overlying the current level L‘. (Recall that the multigrid algorithm computes increments to

the solution on coarser levels.) The coarse grid results in regions overlying the current level are updated by

the following process.

We want to replace the coarse results with appropriately coarsened results from the current level

wherever the coarse and fine grids overlap. Given our nodal finite element data organization, this is easy.
The coarse finite element space is nested in the fine space, so we can copy the fine results from fine grid

nodes to co-incidental coarse nodes. This corresponds to replacing coarse results with fine results on coarse

particle paths at the end of the second reaction in operator splitting.
7. Iterative linear algebra

During each time-step on level L‘, we solve a linear system for the Crank–Nicolson discretization of the
diffusion equation. This linear system involves unknowns on levels L‘; . . . ; L0. The initial data for this

diffusion is provided by operator splitting on level L‘, and by time interpolation on levels L‘�1; . . . ; L0. All

that remains in the description of the algorithm is the formulation and solution of the linear system for the

diffusion equation on the hierarchical grid.

There are several parts to the description of this linear system. We use a preconditioned conjugate

gradient iteration to solve the linear system on the composite grid. In Section 5.4 we described the for-

mulation of the linear system on a composite grid, composed of grid cells chosen from the grid hierarchy.

These composite grid equations were related to a simple application of a popular technique called mortar
finite elements. That discussion determines how we compute the residual and matrix–vector multiplies

needed in the conjugate gradient algorithm.

In Section 7.1 we will describe a multiplicative domain decomposition process used to precondition the

conjugate gradient iteration. If there were no local refinement, this multiplicative domain decomposition

would be what is commonly called a multigrid algorithm.

7.1. Multiplicative domain decomposition

We will describe the basic ideas of multiplicative domain decomposition in this section. For more details

on the convergence of the algorithm, the reader can consult [11,12]. This multiplicative domain decom-

position involves the same steps as multigrid: residual calculation, smoothing, restriction and prolongation.

The residual calculation is completely determined by the composite grid equations in Section 5.4. The

prolongation involves injection of coarse grid finite element function values into fine grid interiors and

mortar continuity conditions on fine grid boundaries. The restriction involves the adjoints of the prolon-

gation. The smoother operation is performed within a given level of refinement on a list of grid patches. It

involves both non-overlapping additive domain decomposition between grid patches and Gauss–Seidel
iteration within a grid patch.

Let us consider the simple case where we have two domains Xf � Xc. For example, Xf may correspond to

a fine grid in an adaptive approximation to the solution of some partial differential equation and Xc may

correspond to the coarse grid. Since the union of the grid patches in levelL‘þ1 are contained in the interior of

the union of the grid patches in the coarser level L‘, the general algorithm can be reduced to recursive
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consideration of this two-level case. Specifically, there are no places in the composite grid where neigh-

boring cells differ by more than one level of refinement.

Conceptually, we will think of the true unknown uf and uc on Xc n Xf as providing the best solution
to the problem where it is available. Our composite grid linear system would then take the form

(15).

Multiplicative domain decomposition is a particular iterative improvement algorithm for solving

the composite grid equations (15). Without loss of generality, we will assume that our initial guess for the

solution of the composite grid equations (15) is zero; if not, we apply the algorithm to the system with the

same matrix and the initial residual as right-hand side. The multiplicative domain decomposition algorithm

on level L‘ with ‘ > 0 takes the form

if on finest level; compute the initial fine residual r
ð0Þ
f ¼ �bf ;

pre-smooth on L‘ u
ð1Þ
f ¼ �Sfr

ð0Þ
f ;

compute the composite grid residual on L‘ and L‘�1
r
ð1Þ
f

rð0Þc

" #
¼ r

ð0Þ
f

�bc

" #
þ

Aff

Acf

� �
x
ð1Þ
f ;

restrict the residual from L‘ to L‘�1 rc f ¼ Rrf ;

recursively apply the algorithm on L‘�1
ucf

uc

� �
¼ �

Vff Vfc

Vcf Vcc

� �
rc f

rð0Þc

" #
;

prolong the fine grid correction from L‘�1 to L‘ and update u
ð2Þ
f ¼ u

ð1Þ
f þ Pucf ;

compute the residual on L‘ r
ð2Þ
f ¼ r

ð0Þ
f þ Aff Afc½ �uð2Þf ;

post-smooth on L‘ uf ¼ u
ð2Þ
f � ST

f r
ð2Þ
f :

ð17Þ

Here, R is an inter-grid transfer operator that maps values on the fine grid to values on the coarse grid. We
choose RT to be injection from the coarse finite element space to the fine space.

On the coarsest level L0, the multiplicative domain decomposition algorithm takes the form

solve Au ¼ rð0Þ: ð18Þ

This system of equations corresponds to a discretization of the diffusion equation on the entire domain. The

residual rð0Þ was computed when the composite grid residual was evaluated on the next finer level L1. This

linear system is relatively small and can be solved effectively by a conjugate gradient iteration in multiple

dimensions, or by a direct solve in one dimension.

In our multiplicative domain decomposition algorithm, the smoother Sf corresponds to approximating

the solution of the linear equations for the differential equation on the subdomain Xf with appropriate

boundary conditions. At physical boundaries, these boundary conditions should be specified. If Xf is

smaller than the physical domain, then it is necessary to select appropriate internal boundary conditions for
the definition of Sf . We will describe our choice for the smoother in Section 7.2.

7.2. AMR smoother

The only remaining piece of the iterative solution method is the smoother. As we have already men-

tioned, in 1D we use a direct solver for the smoother. This means that on any grid patch that does not touch

the boundary of the physical domain, we have Dirichlet boundary data coming from the coarse grid, and

we solve directly for the interior unknowns. On any grid patch that does touch the physical boundary, we
have Neumann data at that boundary and must solve for the solution at the boundary.
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In multiple dimensions, the smoother must take a different form. We do not want to use a direct solver

for the smoother in multiple dimensions, because the work is not proportional to the number of unknowns.

Furthermore, the boundary nodes for a grid patch in level L‘ may include nodes on the interface between
levels L‘ and L‘�1, and nodes in the interior of the union of the patches on level L‘. We need to choose a

smoother that will perform well within the multiplicative domain decomposition algorithm and still allow

distributed computation.

We have chosen to use a Gauss–Seidel iteration at patch nodes other than at interior patch boundaries.

At nodes on interior patch boundaries that are also interior to the union of the fine patches, we use a Jacobi

iteration. At nodes on the interface with a coarser grid, a boolean mask tells us to ignore the correction

from the Jacobi iteration.

Unlike the Gauss–Seidel iteration, Jacobi iteration does not depend on the order of processing of the
unknowns. This means that if all patches on some level of refinement compute the same residual at shared

nodes, then distributed Jacobi iterations will compute the same correction to the solution on all patches.

Our approach to the smoother corresponds to an additive domain decomposition, in the following sense.

Consider the case in which there are two patches on level L‘. We could order the equations and unknowns

to obtain a linear system of the form

A11 0 A1i

0 A22 A2i

Ai1 Ai2 Aii

2
4

3
5 u1

u2
ui

2
4

3
5 ¼ b1

b2
bi

2
4

3
5:

Here, u1 is the vector of unknowns in the first patch, other than unknowns on the interface between the two

patches. Similarly, u2 is the appropriate vector of unknowns on the second patch and ui is the vector of

unknowns on the interface between the two patches. We perform a block-Jacobi iteration on this system,

where Gauss–Seidel iteration is used on the first two block equations (for the interior unknowns on each

patch), and Jacobi iteration is used on the last block (for the unknowns on the interface between the patches).

We remark that it is straightforward to verify that condition A of [10] is satisfied by the multigrid scheme

described in this paper.
8. Numerical results

We have considered 1D and 2D simulations of electrical wave propagation in a model heart. All

computations used a refinement ratio of 4, second-order operator splitting and the Crank–Nicolson scheme

for time integration. The diffusion coefficient (membrane conductance/membrane capacitance) as chosen to

be the constant DðxÞ ¼ 1:25� 10�3 cm2/ms. The heart tissue was 6 cm long in each coordinate direction.
For the first millisecond, we applied a stimulus current of )100 lA/cm2 along a band of tissue within 1/

40 of the tissue width from the left-hand side. In two dimensions, from time 315 to 316 ms we applied a

second stimulus of )50 lA/cm2 in the lower left-hand quarter of the tissue. This generated spiral waves in

2D, and interesting AMR.

In order to hasten the relaxation of the tissue after the initial stimulus, we have modified three pa-

rameters in the Luo–Rudy I model. The fast sodium current, slow inward current and time-dependent

potassium current were changed from the original model in [34] to be

INaðg; V Þ ¼ 16m3hjðV � 54:4Þ;
Isiðg; ½Ca�i; V Þ ¼ 0:052df ðV � 7:7þ 13:0287 logð½Ca�iÞÞ;
IK1
ðg; V Þ ¼ 0:423K1ðV þ 87:26Þ:

The changes involve only the leading coefficient in the right-hand side expressions.
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Our coarsest grid consisted of 20 grid cells in each coordinate direction. Without refinement, this grid is

too coarse and causes pinning of the reaction front. As the mesh is refined, the reaction front gains speed

until a limiting value is reached. With 10–12 grid cells inside the reaction front, the computed front speed is
accurate to about two digits.

8.1. Comparison with unsplit method

In order to verify that the operator splitting used in this paper produces reliable results, we also pro-

grammed an unsplit algorithm. Since the reactions in the Luo–Rudy I model are so stiff, it was useful to use

implicit time integration. Since the reactions are nonlinear and our multigrid iteration is designed for linear

systems, we did not program this unsplit scheme for use in AMR.
We discretized the diffusion in the Luo–Rudy I model in space and used the method of lines to integrate

in time. We used the LSODE algorithm due to Hindmarsh [29] for time integration, with relative error

tolerance of 10�10. The LSODE algorithm uses linear multistep methods with variable time-step and order

control. Since LSODE uses a band solver for linear systems in the nonlinear iterations, we restricted

comparisons between this unsplit approach and our operator split approach to 1D. In order to save code

development time in this comparison, we asked LSODE to compute Jacobians numerically. This meant

that LSODE had to make extra evaluations of the right-hand side in the method of lines occasionally, in

order to approximate the Jacobian. As a result, the unsplit code took roughly 48 times longer than our
operator split code on a uniform grid with 1000 cells. The combined cost of the Jacobian evaluations

and the banded system solver would have made 2D runs with this method of lines code prohibitively

expensive.

In order to measure the convergence rates with the unsplit and split methods, we chose to examine the

numerical location of the middle of the reaction front at 80 ms. Specifically, we looked at the numerical

results at that time and linearly interpolated the membrane potential versus space values to determine the

spatial location of Vm ¼ �36:75. The unsplit scheme was run with 62, 125, 250, 500 and 1000 grid cells, and

the results from the two finest simulations were extrapolated to produce the predicted limiting position of
the reaction front. Afterward, we computed the differences between the simulated position of the reaction

front, and the extrapolated value. We performed the same computations with our operator split code,

except that we added simulations with 2000 and 4000 grid cells. Both methods appear to be converging to

the same front location at this time, as illustrated in Fig. 2, although the unsplit results approach from the

left and the operator split results approach from the right. Figs. 3 and 4 shows the errors in the simulated

reaction front location with these two methods. Both methods appear to be second-order accurate.

8.2. Numerical results in 1D

The wave propagation was simulated for a total of 120 ms in 1D. This is slightly more than the amount

of time it takes for the reaction front due to the initial stimulus to cross the tissue. After this time, the AMR

algorithm removes all refinement, and takes large and efficient time-steps on the coarsest level L0 only. If we

had run the comparisons between uniform grid and AMR simulations to later time, we would have made

the uniform grid computations look comparatively worse. In Fig. 5 we show some computational results

for uniform and AMR simulations in 1D. These show the jump in membrane potential propagating to the

right, with good agreement between uniform and AMR computations.
In 1D it is possible to run very detailed uniform grid computations in a reasonable amount of time. A

uniform grid computation with 5120 cells took 907 s, or slightly more than 15 min, on our Dec Alpha

machine. The corresponding AMR simulation took 124 s, or slightly more than 2 min.

Without AMR, we expect that refinement by a factor of r will roughly cost a factor of r2 more work.

This is because the work per time-step is proportional to the number of grid cells, and the time-step is
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Fig. 2. Membrane potential versus position. Solid curve, unsplit method; dashed curve, operator split method.
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Fig. 3. Error in simulated front position versus mesh width. Circles, unsplit method; squares, split method.
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proportional to the cell width. (If we used explicit time integration for the diffusion as in [14], the time-step

would have been proportional to the cell width squared for numerical stability, and the work should

roughly increase by a factor of r3 as a result of refinement.) Thus, refinement by a factor of 4 should in-
crease the cost of uniform grid computations by a factor of 16. In practice, we observed that the com-

putational time increased by somewhat different factors, as shown in Table 1. The observed ratios can be

larger than predicted because we change the tolerance for the reaction computations as we refine the mesh,

as described in Section 4.3. In addition, as the mesh is refined it becomes evident that the reaction front has
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Fig. 4. Absolute value of error in simulated front position versus mesh width. Circles, unsplit method; squares, split method.
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a non-zero width in space that requires increasingly more grid cells to resolve. At low resolution, the

computational time can be less than predicted because the reaction wave is not propagating properly (if at

all), and the solution is not changing much from one time-step to the next.
The computational results for 1D uniform grid simulations show that most of the computational time is

spent in integrating the reactions. For problems with at least 80 grid cells, 90–95% of computational time is

spent in this task. It should be noted, however, that the solution of the linear system for the diffusion

equation is especially simple in 1D, because we can use a tridiagonal system solver. We should not expect

the reaction computations to dominate to such an extent in multiple dimensions.

The computational results for 1D AMR computations show a different scaling with mesh refinement.

Suppose that the propagating front were refined with a fixed number of grid cells normal to the front on

each level of refinement. Then, adding another level of refinement should roughly increase the computa-
tional work by a factor of the refinement ratio r, because the time-step on the fine grid would be decreased

by that factor. In practice, we observed that the computational time increased by a factor greater than r, as
shown in Table 2. These factors are greater than r for at least two reasons. First, the tolerances for both the

reactions and the iterative solution of the linear systems for the diffusion are tightened as we refine the

mesh, as described in Section 4.3. Second, the reaction is more carefully described as having a fixed width in

space, so additional levels of refinement involve increasingly more grid cells within the reaction front.

Nevertheless, the computational time increases much less rapidly with AMR than with uniform grid re-

finement. This indicates that for sufficiently refined computations, the AMR computations should take less
computational time than the uniform grid computations. In Fig. 6 we display some timings for AMR runs

with different refinement ratios and number of levels. Each calculation was run with 20 grid cells on level 0

and refined by a fixed refinement ratio within a curve.

The computational results for 1D AMR simulations show that about 1/3 of the computational time is

spent in integrating the reactions and about 2/3 of the total time in solving the linear systems for diffusion.

About 12% of simulation time is spent in error estimation for regridding; this includes time for solving

linear systems and for integrating reactions. In 1D, the linear system solves with AMR take relatively more

work than uniform grid computations for two reasons. First of all, with AMR there is less work to do in
integrating the reactions because there are fewer grid cells. Second, there is more work to do in the linear



Fig. 5. Membrane potential versus position. (a) Uniform grid of 1280 cells at 60 ms; (b) AMR with four levels at 60 ms; (c) uniform

grid of 1280 cells at 90 ms; (d) AMR with four levels at 90 ms.
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system solve, because the preconditioned conjugate gradient iteration using multiplicative domain de-

composition for AMR cannot be performed as rapidly as a single tridiagonal system solve. This is in spite

of that fact that the AMR algorithms (conjugate gradients preconditioned by multiplicative domain de-

composition) involve work proportional to the number of unknowns in each iteration, and the number of

iterations grows very slowly as the mesh is refined.

In Fig. 7 we show the speedup due to AMR, compared to uniform grid computations. With 80 grid cells

on a uniform grid compared to 20 grid cells refined adaptively once by a factor of 4, we find that the AMR



Table 1

Computational times for 1D uniform grid calculations on a Dec Alpha

Cells Time (s) Ratio

20 0.0401

7.78

80 0.3116

11.17

320 3.48

14.89

1280 51.83

17.5

5120 907

Table 2

Computational times for 1D AMR grid calculations on a Dec Alpha; refinement ratio¼ 4, 20 cells on coarsest grid

Number levels Time (s) Ratio

2 0.4937

6.15

3 3.036

6.63

4 20.13

6.16

5 124
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Fig. 6. Computational time versus equivalent number of grid cells. Circles, refinement ratio 2; squares, ratio 4; diamonds, ratio 8;

triangles, ratio 16; plus, ratio 32. Horizontal axis is 20� r‘, where r is the refinement ratio and ‘ is the finest level number. Com-

putations performed on a 1.4 GHz Athlon processor.
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code runs slower than the uniform grid computation. However, if we compare a uniform grid of 5120 cells

to AMR with five levels using a refinement ratio of 4, we find that the AMR computation runs a factor of

7.29 faster than the uniform grid computation.
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Fig. 7. Speedup due to AMR versus levels of refinement in 1D. Level 0 involved 20 cells; refinement by a factor of 4.
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8.3. Numerical results in 2D

In 2D, the wave propagation was simulated for a total of 460 ms. This is slightly more than the amount
of time it takes for the spiral wave due to the second stimulus to circle around the tissue. After this time, the

spiral wave dissipates and AMR removes all refinement. Between roughly 120 and 315 s in simulation time,

the tissue is relaxing from the initial stimulus, and AMR is able to remove all refinement. Uniform grid

computations waste a great deal of simulation time in this time interval.

In Fig. 8 we show some computational results for AMR computations in 2D. As a result of the first

stimulus along the left-hand side of the domain, the initial jump in membrane potential propagates to the

right, then the tissues relaxes. After the second stimulus in the lower left-hand quadrant of the tissue, a

spiral wave moves clockwise around the domain. The contour plots use a hot–cold color map (blue for low
values, red for high), with the grid patches drawn over the contours.

In 2D we are not able to perform uniform grid calculations with more than 640 cells in each coordinate

direction, because of the size of available memory (1 GB). A uniform grid computation with 320 cells in

each direction took 4863 s, or slightly more than 81 min, on our Dec Alpha machine. The corresponding

AMR simulation using five levels and a refinement ratio of 2 took 2812 s, or slightly less than 47 min. AMR

using three levels and a refinement ratio of 4 took 1113 s, or about 18.5 min. In general, it is more efficient

to use a refinement ratio of 4 than a ratio of 2.

Without AMR, we expect that refinement by a factor of r will roughly cost a factor of r3 more work.
This is because the work per time-step is proportional to the number of grid cells (which multiplies the work

by Oðr2Þ), and the time-step size is proportional to the cell width (which multiplies the work by OðrÞ). If we
had used explicit time integration for the diffusion, the time-step would have been proportional to the

square of the cell width for numerical stability, and the work would roughly increase by a factor of r4 as a
result of refinement. Thus, refinement by a factor of 4 should increase the cost of uniform grid compu-

tations by a factor of 64, and refinement by a factor of 2 should increase the cost by a factor of 8. In

practice, we observed that the computational time increased as shown in Table 3. We believe that the

observed ratios were larger than predicted in some cases for the same reasons as in 1D.



Fig. 8. Contours of membrane potential, AMR, three levels, 40 cells on coarsest level, 30 equally spaced contours: (a) 60 ms; (b) 120

ms; (c) 318 ms; (d) 360 ms; (e) 390 ms; (f) 420 ms.

J.A. Trangenstein, C. Kim / Journal of Computational Physics 196 (2004) 645–679 671



Table 3

Computational times for 2D uniform grid calculations on a Dec Alpha

Cells Time (s) Ratio

20� 20 0.8258

5.34

40� 40 4.41

7.61

80� 80 33.56

8.28

160� 160 277.9

17.5

320� 320 4863
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The computational results for 2D uniform grid simulations again show that most of the computational

time is spent in integrating the reactions. For all of the 2D simulations (using 20–640 cells in each direction),

90% of computational time is spent in this task. This is in spite of the fact that we are using a simple

conjugate gradient iteration (without preconditioning) to solve the uniform grid linear system. However, as

the mesh is refined the cost of the reaction integrations decreases slightly, as the conjugate gradient iteration

begins to take more iterations to converge.
The computational results for 2D AMR computations show a different scaling with mesh refinement.

Suppose that the propagating front were refined with a fixed number of grid cells normal to the front on

each level of refinement. Then, adding another level of refinement should roughly increase the computa-

tional work by a factor of the refinement ratio r2, because the time-step on the fine grid would be decreased

by factor of r and we would use a factor of r more grid cells tangential to the front. (If we had used explicit

time integration for the diffusion, as in [14], the work would be expected to scale proportional to r3.) Thus
with a refinement ratio of 2, we expect that the computational cost should increase by a factor of 4 with

each new level of AMR. In practice, we found that the computational time increased as shown in Table 4.
Note that the computational time increases less rapidly with AMR than with uniform grid refinement. This

indicates that for sufficiently refined computations, the AMR computations should take less computational

time than the uniform grid computations.

The computational results for 2D AMR simulations show that about 3/4 of the computational time is

spent in integrating the reactions, and about 1/4 of the total time in solving the linear systems for diffusion.

In practice, the preconditioned conjugate gradient iteration worked very well, typically using 1 or 2 iter-

ations to converge to the tolerance described in Section 4.3. About 10% of simulation time is spent in error

estimation for regridding; this includes time for solving linear systems and for integrating reactions.
Table 4

Computational times for 2D AMR grid calculations on a Dec Alpha; refinement ratio¼ 2, 20� 20 cells on coarsest level

Number levels Time (s) Ratio

2 11.91

4.62

3 55.04

9.14

4 503

5.59

5 2812
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In Fig. 9 we show the speedup due to AMR, compared to uniform grid computations. With 40 grid cells

in each direction on a uniform grid compared to 20 grid cells refined adaptively once by a factor of 2, we

find that the AMR code runs slower than the uniform grid computation. However, if we compare a uniform
grid of 320 cells in each direction to an AMR grid with five levels using a refinement ratio of 2, we find that

the AMR computation runs a factor of 1.72 faster than the uniform grid computation. The speedup is

significantly greater when AMR uses a refinement ratio of 4. For example, a uniform grid of 320 cells in

each direction takes a factor of 4.35 more computational time than an AMR simulation using three levels

refined from a coarse grid with 20 cells in each direction. We were not able to compare AMR using four or

more levels to uniform grid computations, because the latter would not fit in the available memory.

8.4. Extensions

It is reasonable to ask how the techniques in this paper could be applied to more realistic simulations of

electrical wave propagation in the heart. The extension of the AMR techniques in this paper to structured

3D grids is straightforward. In fact, the AMR code described in this paper has already been applied to 3D

simulation of viscous instabilities for single-phase flow in porous media [52]. That application involves an

elliptic equation with rapidly varying coefficients, much as the elliptic equation in the bidomain model for

electrical wave propagation in the heart. The multigrid iterative solver for that elliptic equation takes

roughly a fixed number of iterations to solve the linear system with different numbers of levels of refine-
ment, so that the work per time-step is roughly proportional to the number of grid cells. At any rate, we do

not foresee any difficulties in extending the methods in this paper to 3D or the bidomain equations.

For problems in which the heart is in a state of chaotic electrical activity, the AMR techniques described

in this paper will not be computational advantageous. In such cases, the AMR code will naturally refine

almost everywhere, at greater cost than a uniform grid computation.

The most significant roadblock preventing us from simulating electrical wave propagation in the full

(3D) heart are the kinds of datasets available for describing the heart itself. Some datasets are basically

staircase grids, providing at best a first-order geometric description of the heart. Other datasets are tet-
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Fig. 9. Speedup due to AMR versus levels of refinement in 2D. Level 0 involved 20 cells; refinement by a factor of 2.



674 J.A. Trangenstein, C. Kim / Journal of Computational Physics 196 (2004) 645–679
rahedral and are best suited for unstructured grid simulations. We are searching for ways to represent the

heart with structured smooth grids, or access to existing datasets of this type, before we extend this code to

3D.
9. Conclusions

Iterative solution of linear systems within AMR leads to significant additional complexity for the AMR

code. Further, many of the details of this code implementation cannot be carried over to other AMR

applications.

For example, we have previously developed iterative methods for solving linear systems arising from
incompressible flow in porous media within AMR. In order to conserve fluid volume and treat random

permeability via harmonic averaging, we used a non-conforming hybrid mixed finite element method

combined with mortar elements. In that porous media application, the volume conservation naturally gave

rise to fine grid unknowns as master to the coarse unknowns at interfaces between coarse and fine grids. In

this application of AMR to a diffusion equation, we used a conforming finite element method, in which it

was natural for the coarse grid unknowns on the interface to be master to the fine. This reversal of

communication rippled through a fair amount of the multiplicative domain decomposition preconditioner.

In spite of the difficulties in code development, we are encouraged by the relative performance advantage
of AMR, when compared to uniform grid computations. Because of the difficulty in programming AMR

for these applications, we have made the code available to the public at http://www.math.duke.edu/~johnt/

duke_amr.html.

This software consists of eight libraries and four application examples. This code has been programmed

for distributed computing; we will report on the success of that development in a later paper.
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Appendix A

We will present the details of our implementation of the LR I reactions below. These functions have been

modified slightly from the original LR I model for improved numerical performance.

The rate of change of intracellular calcium ½Ca�i is

q½Ca�iðg; ½Ca�i; V Þ � �10
�4Isiðg; ½Ca�i; V Þ þ 0:07ð10�4 � ½Ca�iÞ; ðA:1Þ

where g is the vector of gating variables, V is the membrane potential and the slow inward current Isi (in lA/

cm2) is described in [34]. The rate of change of the membrane potential is as described in Eq. (1) of [34]:

qV ðg; ½Ca�i; V ; tÞ � �
1

C
INaðg; V Þ
�

þ Isiðg; ½Ca�i; V Þ þ IKðg; V Þ þ IK1
ðg; V Þ þ IKp

ðV Þ þ IbðV Þ þ IstðtÞ
	
;

where INa is the fast sodium current, Isi is the slow inward current, IK is the time-dependent potassium

current, IK1
is the time-independent potassium current, IKp

is the plateau potassium current, Ib is the time-
independent background current and Ist is the stimulus current. These currents are described in Table 1 of

http://www.math.duke.edu/~johnt/duke_amr.html
http://www.math.duke.edu/~johnt/duke_amr.html
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[34] and have units of lA/cm2. The membrane capacitance per area is C ¼ 1 lF/cm2, and the membrane

diffusion coefficient DðxÞ is the membrane conductance divided by the membrane capacitance, with units of

square cm per millisecond. We have taken DðxÞ to be identically 0.00125 cm/ms in this paper.
The vector of gating variables has the form

gT ¼ K1 X h j m f d½ �: ðA:2Þ

These gating variables are dimensionless. In addition, the stimulus current Istðx; tÞ is some specified function

of space and time. We described our stimulus current in Section 8.

The inactivation gate Xi of the time-dependent sodium current IK and the activation gate Kp of the

plateau potassium current IKp
are assumed to reach steady state very rapidly, so they are functions of V

only:

XiðV Þ ¼
2:837e1 � mXiðV Þð Þ exp mXiðV Þ � dXiðV Þð Þ; mXiðV ÞP 0;
2:837e1 mXiðV Þð Þ exp � dXiðV Þð Þ; mXiðV Þ < 0 and V > �100;
1:; V 6 � 100;

8<
: ðA:3aÞ

where mXiðV Þ � 0:04ðV þ 77Þ and dXiðV Þ � 0:04ðV þ 35Þ

KpðV Þ ¼
exp � dKp

ðV Þ

 �

=½1þ exp � dKp
ðV Þ


 �
�; dKp

ðV ÞP 0;
1=½1þ exp dKp

ðV Þ

 �

�; dKp
ðV Þ < 0;

�
ðA:3bÞ

where dKp
ðV Þ � ðV � 7:488Þ=5:98.

In order to avoid unnecessary cancellation errors, we have used the function

e1ðxÞ �
ex � 1

x
:

For jxj6 1=4, we use the Pad�e approximation

e1ðxÞ �
15120þ x 840þ x 420þ xð20þ xÞð Þð Þ

15120� x 6720� x 1260� xð120� 5xÞð Þð Þ ; ðA:4Þ

with errors close to roundoff in double precision on our machine.

Recall from Eq. (1a) that the other gating variables satisfy rate equations of the form dg=dt ¼
a� ðaþ bÞg. We use the notation

aT ¼ aK1
aX ah aj am af ad½ �; bT ¼ bK1

bX bh bj bm bf bd

� 	
for the vectors of rates in these rate equations. The rates for the inactivation gate K1 of the time-inde-

pendent potassium current IK1
are:

aK1
ðV Þ ¼ 1:02 expð�dK1

ðV ÞÞ=½1þ expð�dK1
ðV ÞÞ�; dK1

ðV ÞP 0;
1:02=½1þ expðdK1

ðV ÞÞ�; dK1
ðV Þ < 0;

�
ðA:5aÞ

where dK1
ðV Þ � 0:2385ðV þ 87:26� 59:215Þ;

bK1
ðV Þ ¼

0:49124 expðmK1 ;1ðV Þ�dK1 ðV ÞÞþexpðmK1 ;2ðV Þ�dK1 ðV ÞÞ
1þexpð�dK1 ðV ÞÞ

; dK1
ðV ÞP 0;

0:49124 expðmK1 ;1ðV ÞÞþexpðmK1 ;2ðV ÞÞ
1þexpðdK1 ðV ÞÞ

; dK1
ðV Þ < 0;

8<
: ðA:5bÞ

where mK1;1ðV Þ � 0:08032ðV þ 87:26þ 5:476Þ, mK1;2ðV Þ � 0:06175ðV þ 87:26� 594:31Þ, dK1
ðV Þ � �0:5143

ðV þ 87:26þ 4:753Þ.
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The rates for the activation gate X of the time-dependent potassium current IK are:

aX ðV Þ ¼
0:0005 expðmX ðV Þ � dX ðV ÞÞ=½1þ expð�dX ðV ÞÞ�; dX ðV ÞP 0;

0:0005 expðmX ðV ÞÞ=½1þ expðdX ðV ÞÞ�; dX ðV Þ < 0;

(
ðA:6aÞ

where mX ðV Þ � 0:083ðV þ 50Þ, dX ðV Þ � 0:057ðV þ 50Þ;

bX ðV Þ ¼
0:0013 expðmX ðV Þ � dX ðV ÞÞ=½1þ expð�dX ðV ÞÞ�; dX ðV ÞP 0;

0:0013 expðmX ðV ÞÞ=½1þ expðdX ðV ÞÞ�; dX ðV Þ < 0;

(
ðA:6bÞ

where mX ðV Þ � �0:06ðV þ 20Þ, dX ðV Þ � �0:04ðV þ 20Þ.
The rates for the inactivation gate h of the fast sodium current INa are:

ahðV Þ ¼ 0:135 expð�ðV þ 80Þ=6:8Þ; ðA:7aÞ
bhðV Þ ¼
/h½3:56 expð0:079V Þ þ 3:1� 105 expð0:35V Þ�; V < �40;
ð1=0:13Þ=½1þ expð�ðV þ 10:66Þ=11:1Þ�; V P � 40;

�
ðA:7bÞ

where /h chosen so that bh is continuous.

The rates for the slow inactivation gate j of the fast sodium current INa are:

ajðV Þ ¼
� ½xj1 expðmj1ðV Þ�djðV ÞÞþxj2 expðmj2ðV Þ�djðV ÞÞ�ðVþ37:78Þ

1þexpð�djðV ÞÞ ; djðV ÞP 0;

� ½xj1 expðmj1ðV ÞÞþxj2 expðmj2ðV ÞÞ�ðVþ37:78Þ
1þexpðdjðV ÞÞ ; djðV Þ < 0;

(
ðA:8aÞ

where xj1 ¼ 1:2714� 105, xj2 ¼ 3:474� 10�5, mj1ðV Þ ¼ 0:2444V , mj2ðV Þ ¼ �0:04391V , djðV Þ ¼ 0:311ðVþ
79:23Þ;

bjðV Þ ¼
0:3; V > 72;

0:3 expð�2:535� 10�7V Þ=½1þ expð�0:1ðV þ 32ÞÞ�; �406 V 6 72;

/j expð�0:0152V Þ=½1þ expð�0:1378ðV þ 40:14ÞÞ�; V < �40;

8><
>: ðA:8bÞ

where /j chosen so that bj is continuous.

The rates for the activation gate m of the fast sodium current INa are:

amðV Þ ¼
3:2=e1ð�dmðV ÞÞ; dmðV ÞP 0;

3:2 expðdmðV ÞÞ=e1ðdmðV ÞÞ; dmðV Þ < 0;

(
ðA:9aÞ

where dmðV Þ ¼ 0:1ðV þ 47:13Þ;

bmðV Þ ¼ 0:08 expð�V =11:0Þ: ðA:9bÞ

The rates for the inactivation gate f of the slow inward current Isi are:

af ðV Þ ¼
0:12 expðmf ðV Þ � df ðV ÞÞ½1þ expð�df ðV ÞÞ�; df ðV ÞP 0;

0:12 expðmf ðV ÞÞ½1þ expðdf ðV ÞÞ�; df ðV Þ < 0;

(
ðA:10aÞ

where mf ðV Þ ¼ �0:008ðV þ 28:Þ, df ðV Þ ¼ 0:15ðV þ 28:Þ;

bf ðV Þ ¼
0:0065 expðmf ðV Þ � df ðV ÞÞ½1þ expð�df ðV ÞÞ�; df ðV ÞP 0;

0:0065 expðmf ðV ÞÞ½1þ expðdf ðV ÞÞ�; df ðV Þ < 0;

�
ðA:10bÞ



J.A. Trangenstein, C. Kim / Journal of Computational Physics 196 (2004) 645–679 677
where mf ðV Þ ¼ �0:02ðV þ 30:Þ, df ðV Þ ¼ �0:2ðV þ 30:Þ.The rates for the activation gate d of the slow in-

ward current Isi are:

adðV Þ ¼
0:095 expðmdðV Þ � ddðV ÞÞ=½1þ expð�ddðV ÞÞ�; ddðV ÞP 0;
0:095 expðmdðV ÞÞ=½1þ expðddðV ÞÞ�; ddðV Þ < 0;

�
ðA:11aÞ

where mdðV Þ ¼ �0:01ðV � 5Þ, ddðV Þ ¼ �0:072ðV � 5Þ;

bdðV Þ ¼
0:07 expðmdðV Þ � ddðV ÞÞ=½1þ expð�ddðV ÞÞ�; ddðV ÞP 0;
0:07 expðmdðV ÞÞ=½1þ expðddðV ÞÞ�; ddðV Þ < 0;

�
ðA:11bÞ

where mdðV Þ ¼ �0:017ðV þ 44:Þ, ddðV Þ ¼ 0:05ðV þ 44:Þ.
In these expressions, only ah and bm are the identical to the equations in [34].
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